“Feature Detection” vs. “Predictive Coding” Models of Plant Behavior
نویسندگان
چکیده
In this article we consider the possibility that plants exhibit anticipatory behavior, a mark of intelligence. If plants are able to anticipate and respond accordingly to varying states of their surroundings, as opposed to merely responding online to environmental contingencies, then such capacity may be in principle testable, and subject to empirical scrutiny. Our main thesis is that adaptive behavior can only take place by way of a mechanism that predicts the environmental sources of sensory stimulation. We propose to test for anticipation in plants experimentally by contrasting two empirical hypotheses: "feature detection" and "predictive coding." We spell out what these contrasting hypotheses consist of by way of illustration from the animal literature, and consider how to transfer the rationale involved to the plant literature.
منابع مشابه
Expectation and surprise determine neural population responses in the ventral visual stream.
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, "predictive coding" models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and prov...
متن کاملاستفاده از نمایش پراکنده و همکاری دوربینها برای کاربردهای نظارت بینایی
With the growth of demand for security and safety, video-based surveillance systems have been employed in a large number of rural and urban areas. The problem of such systems lies in the detection of patterns of behaviors in a dataset that do not conform to normal behaviors. Recently, for behavior classification and abnormal behavior detection, the sparse representation approach is used. In thi...
متن کاملNovel Pitch Detection Algorithm With Application to Speech Coding
This thesis introduces a novel method for accurate pitch detection and speech segmentation, named Multi-feature, Autocorrelation (ACR) and Wavelet Technique (MAWT). MAWT uses feature extraction, and ACR applied on Linear Predictive Coding (LPC) residuals, with a wavelet-based refinement step. MAWT opens the way for a unique approach to modeling: although speech is divided into segments, the suc...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملPerformance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures
Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016